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High-accuracy discrete path integral solutions for stochastic processes
with noninvertible diffusion matrices

Alexander N. Drozdov*
Fı́sica Teo´rica, Universidad de Sevilla, Apartado de Correos 1065, Sevilla 41080, Spain

~Received 25 October 1996!

The derivation of the discrete path integral solution for the propagator is known to present a special problem
for those stochastic processes whose diffusion matrices are noninvertible. In this paper two methods for
formulating the stochastic dynamics in terms of path integrals are developed that are applicable whether or not
the diffusion matrix is invertible. One of the methods is an extension of the standard technique available for the
derivation of the functional formalism from Langevin equations. An accurate discretization scheme is used to
replace these equations by finite-difference equations and a short time approximation for the propagator is then
derived in terms of known statistical properties of noise terms. An alternative derivation of the discrete path
integral is presented in terms of the Fokker-Planck formulation without the necessity of introducing discreti-
zation schemes into the discussion. This is achieved by making use of the cumulant generating function which
is different in this realm. The mutual correspondence of the methods is established and their possible exten-
sions are discussed. Both methods are indeed rigorous and allow for thesystematicderivation of the short time
propagator valid to any desired precision in a time incrementt. Its use in a path integral means a significant
reduction of the number of time steps that are required to achieve a given level of accuracy for a given net
incrementt5Nt, and, therefore, significantly increasing the feasibility of path integral calculations. Another
attractive feature of the present techniques is that they permit the efficient treatment of equations with singular
diffusion matrices, two of which, a Kramers equation and a colored-noise problem, are considered.
@S1063-651X~97!08403-1#
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I. INTRODUCTION

The analysis and understanding of dynamical phenom
remains one of the fundamental goals of physics. In part
lar, considerable effort has been recently devoted to stud
realistic systems driven by noise and friction. It is know
that the statistical dynamics of such systems can be desc
in a formally equivalent way by following either the Fokke
Planck equation

] tP~q,t !5LP~q,t ![@2] iGi~q!1 1
2 ] i j

2Di j ~q!#P~q,t !
~1!

or a set of Langevin equations,

q̇~ t !5G@q~ t !#1B@q~ t !#F~ t !, ~2!

with FT(t)5$F1(t), . . . ,Fm(t)% being Gaussian white nois
normalized to

^Fi~ t !&50, ^Fi~ t !F j~s!&5d i jd~ t2s!, ~3!

wherein the standard summation convention over repe
indexes is implied, while the dot denotes the time derivati
Although the systematic variablesqT5$q1 , . . . ,qm% of Eq.
~1! are generally different from the stochastic variab
qT(t)5$q1(t), . . . ,qm(t)% governed by Eq.~2!, we do not
distinguish them notationally to keep the presentat
simple. One also notes here that there is a connection
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tween the Fokker-Planck coefficientsG andD and those of
Eq. ~2!. It depends upon the interpretation of the stochas
integral

E
0

t

ds B@q~s!#F~s!, ~4!

but this point will be discussed at greater length in Sec.
The Fokker-Planck and Langevin equations, firstly a

plied to investigate Brownian motion@1# and the diffusion
model of chemical reactions@2,3#, are now largely em-
ployed, in various generalized forms, in many fields invo
ing stochastic processes. General reviews have recently
given by Gardiner@4# and Risken@5#. As it is generally not
possible to obtain closed form analytical solutions of seco
order partial differential equations, many successful num
cal schemes have been developed during the last dec
which integrate the Fokker-Planck equation on a grid@6,7# or
in a basis set@8#. Their utility, however, is strongly limited
by the storage requirements and execution time that g
very rapidly with the dimensionality of the system und
study. With present day computers, exact schemes are
sible in practice for systems of a few degrees of freedo
while truly multidimensional systems are usually dealt w
using approximate techniques. Computer simulation
Langevin equations is not so restrictive with respect to
dimensionality and could be very accurate with intens
computational efforts@9,10#. The numerical schemes avai
able for the integration of these equations are computat
ally efficient in terms of storage requirements; but they b
come ineffective and may even give false results wh
9
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dealing with systems with more than one stable state,
which simulations over very long-time lengths are usua
required@11#. The various approximate methods could a
be employed for analytically treating Fokker-Planck a
Langevin equations, provided that their specific assumpti
are satisfied.

Among the rest of the methods substantial attention
been given to the path integral representation of statist
dynamics. This arises very naturally from the context of s
chastic processes, and was first studied in detail by Wie
for Brownian motion@12#. Ever since Feynman propose
path integration as an alternative formulation of nonrela
istic quantum mechanics@13#, the path integral method ha
been successfully applied to almost all branches of theo
cal physics@14#. The reason for this seems to be the fact t
path integrals are often beautiful and elegant answers
physical problems. They are more than solutions of app
priate Schro¨dinger, Fokker-Planck, or Langevin equation
Their formulations incorporate global properties of the s
tem and they can give answers which are not obvious
terms of partial~or stochastic! differential equations. As a
result, the path integral method provides a powerful tool
formal manipulations, for doing both perturbative and no
perturbative, systematic treatments@13–19#. Numerical ap-
plications have also become increasingly important dur
the last decade and have often led to new physical results
obtainable by other means@19,20#. From a computationa
point of view, the most appealing feature of the method
perhaps that it avoids explicit reference to distribution fun
tions whose storage requirements grow exponentially w
the number of coupled degrees of freedom. Instead, all
namical characteristics are included in a discrete path i
gral representation of the conditional probability~propaga-
tor!, which expresses the distribution function for a
~arbitrary! time t

P~q,t !5E )
n50

N21

dqnP~k!~q
n11,tuqn!P~q0,0!1O~ tk11/Nk!

~5!

in terms of the known short time propagator. Hereby, we
qN5q, t5t/N, and introduced the short time propagat
P(k)(q

n11,tuqn) which is an approximation for the tru
propagatorP(qn11,tuqn),

P~qn11,tuqn!5P~k!~q
n11,tuqn!1O~tk11!, ~6!

valid at least to first order int,(k51). In practice, though,
one would like for the short time propagators to be accur
for an order int as high as possible, in order to keep t
number of integration variables in Eq.~5! as small as pos
sible ~for a given net time incrementt).

As there exists no unique way to determine the short t
propagator, many different path integrals corresponding
various different approximate schemes have resulted. An
tensive review on this subject can be found in Ref.@21#. The
most obvious derivation utilizes the usual limiting procedu
in which the time interval@0,t# is divided intoN equal sub-
intervals @0,t1#,@ t1 ,t2#, . . . , of duration t, and Eq.~2! is
replaced by a difference equation
r
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qn112qn5E
tn

tn11
ds G@q~s!#1E

tn

tn11
ds B@q~s!#F~s!,

~7!

with qn5q(tn) and tn5nt. For simplicity, we restrict our-
selves in this section to state-independent matricesBi j .
Then, theresultof the functional representation of the pro
ability P(q,t) is independent of the discretization scheme
the stochastic integral, Eq.~4!. That is, the Langevin equa
tion ~2! is equivalent to the Fokker-Planck equation~1! with
a diffusion matrixDi j5BikBjk , and no problems of the type
of the Stratonovich versus Ito interpretation arise in this c
@4#.

The common procedure relies on the primitive integrat
scheme~see, e.g.,@15,22#!

qn112qn2t@mG~qn11!1~12m!G~qn!#5Bfn11, ~8!

wherem is an arbitrary number from the interval@0,1#, while
the notationf n11 stands for

f n115E
tn

tn11
ds F~s!. ~9!

Equation~8! relates the two sets of variables (q1, . . . ,qN)
and (f1, . . . ,f N). The corresponding probabilities of the di
cretized realizationP and R are therefore related by th
equation

P~qN, . . . ,q1uq0!5R~ f N, . . . ,f1!J~qN, . . . ,q0!, ~10!

with J being the Jacobian of the transformation det@df/dq#,

J5detS ] f i
n

]qj
kD

5D2N/2det@d i , jdn,k2d i , jdn21,k2mtdn,k] jGi~q
n!

2~12m!tdn21,k] jGi~q
n21!#, ~11!

whereD5det(Di j )5det2(Bi j ). The Jacobian can be evalu
ated by using the matrix identity for the determinant@15#

det~ I2M !5exp@Tr ln~ I2M !#

5exp@Tr~2M2 1
2M

22••• !#, ~12!

which gives to ordert

J5 )
n51

N

D21/2exp@2mt] iGi~q
n!#. ~13!

The multivariate probability of the variablesf n is readily
determined in terms of the known statistical properties of
random noiseF(t), Eq. ~3!, to yield

R~ f N, . . . ,f1!5 )
n51

N

~2pt!2m/2expS 2
1

2t
uf nu2D . ~14!

Then, writing the propagator of the processq(t) as

P~q,tuq0!5E )
n51

N21

dqnP~qN5q, . . . ,q1uq0!, ~15!
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one immediately obtains the discrete path integral repre
tation

P~q,t !'E )
n50

N21

dqn@~2pt!mD#21/2expH 2tm] iGi~q
n11!

2
1

2t
Di j @qi

n112qi
n2tmGi~q

n11!

2t~12m!Gi~q
n!#@ # j J P~q0,0!, ~16!

where Di j is the element of the inverse diffusion matr
D21, while @ # j means the same bracket as in front of it b
with the index j instead ofi . It is not hard to see that th
right-hand side of Eq.~16! is a product of the short time, o
single step propagators

P~1!~q
n11,tuqn!5@~2pt!mD#21/2expH 2tm] iGi~q

n11!

2
1

2t
Di j @qi

n112qi
n2tmGi~q

n11!

2t~12m!Gi~q
n!#@ # j J , ~17!

each one propagating the system for timet. One notes that
analogous results can also be obtained in terms of
Fokker-Planck description, e.g., by using the Trotter splitt
of the time evolution operator exp(tL) based on partitioning
the Fokker-Planck operatorL into drift and diffusion terms
@23#.

From a purely formal point of view, the existing pa
integral representations are all equivalent to each other
they become an equality in the limitN→` ~whateverm). In
practice, only a few path integrals can be evaluated exa
in this limit, and the approximate evaluation of Eq.~5! with
finite N seems useful and sometimes necessary. There
there can be practical advantages to choosing one path
gral representation over the others. When treating path i
grals numerically, the obvious criteria for their selection a
the ease of implementation and convergence properties.
higher the rate of convergence of a path integral, the sma
the number of time steps~and therefore the execution time!
that are required to evaluate it to a given level of accura
Until recently, however, the only requirement usually ma
on the short time propagator was that it satisfies Eq.~1! to
orderO(t).

The problem of importance is thus to develop a syste
atic theoretical formalism for constructing path integral re
resentations~single step propagators! valid to any desired
order in 1/N ~in t) which is rigorous and also simple t
implement. This problem has been resolved in our ear
papers@21,24# in terms of the Fokker-Planck formulation b
expanding the exponent of the propagator in a power se
in t,
n-
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P~q,tuq0!5@~2pt !mD#21/2expF2
1

2t
~q2q0!TD21~q2q0!

1tkWk~q,q
0!G , ~18!

where the index of summation varies from 0 to`. Integral
recursive relations are obtained for the expansion coefficie
Wk which can beanalyticallyevaluated in many situations o
practical interest. Any finite truncation of the series in E
~18! at k.0 was shown to be much more accurate than
standard short time approximation~17!, allowing for much
larger time increments in a path integral. In a recent serie
papers@25,26#, this formalism has been substantially mod
fied and improved, so that we have managed to deal v
efficiently with general Fokker-Planck Schro¨dinger pro-
cesses, and their dynamics can now be calculatedaccurately
with anynumber of degrees of freedom forarbitrarily large
times using solely thesingle steppropagator.

Two disadvantages of the above mentioned formalism
as follows. The power series expansion for the propagato
efficient if and only if the coefficients of the Fokker-Planc
equationGi(q) andDi j (q) are simple enough~polynomials
or a finite sum of exponentials! so that the various integral
involved inWk(q,q

0) are doable analytically. Otherwise, th
calculations rapidly become very arduous especially
curved manifolds when the curvature tensor associated
Di j does not vanish. In the latter case we have failed to
beyondk51 @21#. Another disadvantage of the power seri
expansions formalism, which is also inherent to Eq.~17!, is
that its utility is restricted to processes with invertible diff
sion matrices. But the invertibility ofDi j is not a generic
case. There is a wide class of physically meaningful stoch
tic models whose diffusion matrices are noninvertible. T
latter property implies that the integration measure for
standard path integral representations available in the lit
ture for multidimensional stochastic processes@see, e.g., Eq.
~16!# becomes a singular (d-function-like! quantity. This
makes impossible the numerical evaluation of the path in
gral and hinders considerably obtaining explicit solutions
approximations of the WKB type.

The above observations inspire the quest for other p
integral representations free of these two drawbacks. O
might at first believe that this issue should have been set
long ago, namely, because of its continuous usefulnes
many problems ranging from chemical physics to biolog
Still, a look at textbooks on path integration@14# as well as
some recent attempts@15,17,18# in this direction manifestly
show that this isnot the case. To the best of our knowledg
there are no general discrete path integral solutions of s
equations other than those derived recently by the pre
author in terms of an operator decoupling technique@27#.
These representations, however, are valid to orderN22

solely. Thus, a satisfactory solution to the above-posed p
lem iseffectivelystill lacking.

Our aim is to try to remedy this disappointing situatio
The remainder of the paper is organized as follows. In Sec
we present a straightforward method for thesystematicderi-
vation of better short time propagators from the Lange
equations~2!. By better we mean analytically obtainabl
easily evaluateable approximations for the single step pro
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gator accurate for an order int as high as possible. An al
ternative derivation of the discrete path integral is presen
in Sec. III. It relies on the Fokker-Planck description of t
stochastic dynamics. Numerical applications to an activa
rate process in a double well given in Sec. IV show the n
single step propagator to be a dramatic improvement over
standard short time approximation. Its use in a path inte
means that a given level of accuracy is easily achieved w
out any increase~or even with a smaller value! of the number
of time stepsN just due to increasing the order of approx
mationk. Both approaches are rather general and allow
equations with singular diffusion matrices, two of which,
Kramers equation and a colored-noise problem, are con
ered. Section V concludes with some general remarks.

II. DISCRETIZATION OF THE LANGEVIN EQUATION

The key idea of the method we present below is the sa
as in the formal path integral derivation outlined in the I
troduction. It consists of two steps. The first step is to obt
an approximate solution, for a short timet, of the stochastic
processq(t). The second step is the construction of the sh
time propagator in terms of the known statistical propert
of the noiseF(t). The method is combinatorial and does n
depend on the dimensionality of the considered proc
Therefore we shall illustrate it in the simplest possible si
ation, that is, a one-dimensional stochastic equation. At
end we shall indicate the obvious steps to adapt the me
to nontrivial cases.

More explicitly, the stochastic equation is

x~ tn1t!5xn1E
tn

tn1t

ds G@x~s!#1E
tn

tn1t

ds B@x~s!#F~s!,

~19!

with

^F~ t !&50, ^F~ t !F~s!&5d~ t2s!. ~20!

The common method of approximately solving equations
such the type relies on the expansion of their coefficient
a Taylor series about the prepointxn5x(tn) ~see, e.g., Refs
@10# and @28#!. The resulting equation is then solved iter
tively by using the recurrence relation

x~k!~ tn1t!5xn1 (
i50

2k21 Gn
~ i !

i ! Etn
tn1t

ds@x~k!~s!2xn#
i

1(
i50

2k Bn
~ i !

i ! Etn
tn1t

ds F~s!@x~k!~s!2xn#
i ,

~21!

whereZn
( i )5@diZ(x)dxi #xn, Z5G,B. In order to keep the

presentation simple, we will not go, in this section, beyo
second order int. Neglecting terms of an order higher tha
t2, one obtains

xn112y~xn ,t!5un11 , ~22!

where the deterministic portion ofx(t) reads
d

d
w
he
al
h-

r

id-

e

n

rt
s
t
s.
-
e
od

f
in

d

y~xn ,t!5xn1tGn1
t2

2
GnGn8, ~23!

while the stochastic portion is given after rearranging by

un115BnW0~t!1BnGn8W1~t!1
1

2
Bn
2Gn9E

0

t

ds W0
2~s!

1Bn8FBnI 1~t!1GnE
0

t

ds F~s!s1BnGn8
2E

0

t

ds I1~s!

1BnBn8E
0

t

ds F~s!I 1~s!1BnGn8E
0

t

ds F~s!W1~s!G
1
1

2
Bn9FBn

2I 2~t!1Bn
2E

0

t

ds F~s!I 2~s!

12BnGnE
0

t

ds F~s!W0~s!s

12Bn
2Bn8E

0

t

ds F~s!W0~s!I 1~s!G1
1

6
Bn
3Bn

-I 3~t!.

~24!

Hereby, the prime denotes differentiation with respect tox,
and the notationsWi and I i stand for

I i~t!5E
0

t

ds F~s!W0
i ~s!,

Wi~t!5E
0

t

dtiE
0

t i
dti21•••E

0

t2
dt1E

0

t1
dt0F~ t0!. ~25!

Equation~22! relates the two sets of variables (xN , . . . ,x1)
and (uN , . . . ,u1). As the functions involved in Eq.~22! are
all evaluated at the prepointxn , the Jacobian of the transfor
mation is equal to unity in this case. Therefore, the short ti
propagator of the discretizedx realization reads

P~k!~xn11 ,tuxn!5R~k!~un11 ,t!, ~26!

whereR is the probability distribution of the fluctuating term
un11.

The second step of the present method is thus the de
tion of the statistical properties of the noise term. The res
of this derivation depends on the interpretation of the vario
stochastic integrals involved in Eq.~24!. Two different inter-
pretations are commonly used. In Ito’s interpretation, the
tegralsI n are determined by

I i~t!5
1

i11
W0

i11~t!2
i

2E0
t

ds W0
i21~s!. ~27!

While in the Stratonovich interpretation these read

I i~t!5
1

i11
W0

i11~t!. ~28!

For simplicity we will follow, without loss of generality,
Ito’s interpretation, in which case a stochastic process ob
ing Eq.~2! is equivalent to a diffusion process defined by E
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~1! with a diffusion matrixD(q)5B(q)BT(q) @4#. With this
choice just a few terms of Eq.~24! contribute to the average
^un11

i &, the first two of which take the form

^un11&5 1
4 t2Bn

2Gn9,

^un11
2 &5M2~xn ,t!

5tBn
21

t2

2
~2Bn

2Gn812GnBnBn81Bn
2Bn9

21Bn
3Bn9!.

~29!

Moreover, it is a simple matter to show that all cumulants
higher order than 2 vanish. The latter property implies t
the stochastic processu remains Gaussian up to and inclu
ing terms of ordert2. This immediately yields

P~2!~xn11 ,tuxn!5@2pM2~xn ,t!#21/2

3expH 2
@xn112M1~xn ,t!#2

2M2~xn ,t! J ,
~30!

where

M1~xn ,t![y~xn ,t!1^un11&

5xn1tGn1
t2

2
~GnGn81 1

2 Bn
2Gn9!, ~31!

andM2(xn ,t) is defined by Eq.~29!. The above derivation
is fairly straightforward and can always be continued to a
desired ordertk,k.2. One notes, however, that the stocha
tic processu is not generally Gaussian fork.2, and non-
Gaussian corrections are to be included in higher-or
propagatorsP(k.2) . A way of doing this properly will be
discussed in Sec. III. It may also be noted here that the s
dard first-order propagator,P(1)(xn11 ,tuxn), follows from
Eq. ~29! if one neglects inM1(xn ,t) andM2(xn ,t) terms of
ordert2.

For completeness we also present the generalizatio
Eq. ~30! to systems with more than one degree of freedom
reads

P~2!~q
n11,tuqn!5$~2p!mdet@Mi j ~q

n,t!#%21/2

3exp$2 1
2M

i j ~qn,t!@qi
n11

2Mi~q
n,t!#@ # j%, ~32!

where

Mi5Fqi1tGi1
t2

2 SGj] jGi1
1

2
BjkBrk] j r

2 Gi D G
qn
,

Mi j5FtBirBjr1
t2

2 SBirBkr]kGj1BjrBkr]kGi1Gr] rBikBjk

1
1

2
BrkBpk] rp

2 BivBjvD G
qn
. ~33!

The propagator corresponding to the Stratonovich interpr
tion of Eq.~2! is then obtained from the observation that th
f
t

y
-

r

n-

of
It

a-

equation is the same as the Ito stochastic differential eq
tion but with the drift vectorGi replaced byGi1

1
2Bkj]kBi j

@4#.
Finally, we note that the method outlined above can

modified to cover non-Markovian processes with an arbitr
correlation function. These equations occur in ma
branches of physics and chemistry, but their solution is a
from simple task. We are going to consider this point in
future publication.

III. THE RELATION WITH THE CUMULANT
GENERATING FUNCTION FORMALISM

Within the context of the Fokker-Planck description, t
starting point for the derivation of a discrete path integra
the fact that the propagator for a finite timet can be factored
into a product ofN propagators, each one of which prop
gates the system for a shorter time intervalt5t/N:

P~q,t !5E )
n50

N21

dqnP~qn11,tuqn!P~q0,0!. ~34!

The only advantage of breaking up the propagator accord
to Eq. ~34!, is that we can thus use, in the right-hand side
this equation, instead of the exact propagatorP(qn11,tuqn)
its short time approximationP(k)(q

n11,tuqn) leading us to
Eq. ~5!. The most common procedure of approximating t
propagator by a discrete path integral relies on the oper
representation

P~q,tuq0!5etLd~q2q0!, etL5~etL!N. ~35!

The Trotter splitting can then be used which is based
partitioning the Fokker-Planck operatorL into a linear con-
tribution L0 and an anharmonic correctionL1, and approxi-
mating each short time evolution operator exp(tL) by a prod-
uct of exponentials@27#,

exp~tL !5exp~tL1/2!exp~tL0!exp~tL1/2!1O~t3!.
~36!

The disadvantage of this approach is that its utility is gen
ally restricted tok<2. Although formally possible to con
struct, any higher-order approximants involve either polyn
mials of orderk of the operatorsL0 andL1 @29# or negative
coefficients@30#, making these approximants rather impra
tical for stochastic processes.

An alternative method of approximating the propaga
for short timet can be developed in terms of the charact
istic function formalism without the necessity of introducin
noncommuting operators into the discussion. The key po
of this approach is the observation that the stochastic dyn
ics can be studied in a formally equivalent way by followin
either the distribution function or the average of dynami
variables defined by

^a~ t !&5E dq P~q,t !a~q!. ~37!

It is a simple matter to show that Eq.~37! can be cast into the
form
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^a~ t !&5E dq P~q,0!A~q,t !, ~38!

where the functionA(q,t) obeys the backward Fokker
Planck equation

] tA~q,t !5L1A~q,t ![@Gi~q!] i1
1
2Di j ~q!] i j

2 #A~q,t !,
~39!

supplemented by the initial conditionA(q,0)5a(q). With a
d-function initial condition

P~q,0uq0!5d~q2q0!, ~40!

the formal solution of the above problem reads

^a~ t !&5@exp~ tL1!a~q!#q0. ~41!

Our aim is to develop asystematicstrategy for generating
short time propagators in terms of the known averages
dynamical variables. A straightforward way for achievin
this is to make use of the characteristic function. The latte
defined by

w~z!5E dq P~q,t !exp~ ıqTz! ~42!

and can be evaluated in terms of moments by expanding
a power series

w~z!5
ı r

r ! (
$n%

^q1
n1
•••qm

nm&
r !

n1! •••nm!
d S r ,(

j51

m

n j D
3z1

n1
•••zm

nm, ~43!

where the index of summationr varies from 1 tò . When
the momentŝ) iqi

n i& are all determined, e.g., by Eq.~41!, the
Fourier inversion formula

P~q,t !5~2p!2mE dz w~z!exp~2ıqTz! ~44!

gives us the distribution functionP(q,t) for an arbitrary time
t. As, however, we are interested in the short time dynam
a truncated power series representation for the moments

K )
i51

m

qi
n iL

~k!

5F (
j50

k
~tL1! j

j ! )
i51

m

qi
n iG

qn
5(

j50

k

Aj~q
n!t j ,

~ j11!Aj11~q
n!5@L1Aj~q!#qn, A0~q!5)

i51

m

qi
n i

~45!

could be used to determine the short time propaga
P(k)(q

n11,tuqn) via Eqs.~43! and~44!. The disadvantage o
this approach, however, is that the moment expansion,
~43!, does not correspond to any systematic expansion
parameter of the system. As a result, one has to determ
and sum infinitely many terms in the series~43! whatever
small t we chose. Otherwise it may diverge even thou
t50.
of

is

as

s,

r

q.
a
ne

h

Fortunately, this is not the case for the cumulant gene
ing function defined by

F~z!5 lnw~z!. ~46!

It is also expandable in a power series that can be written

F~z!5
ı r

r ! (
$n%

^^q1
n1•••qm

nm&&dS r ,(
j51

m

n j D z1n1•••zmnm,
~47!

where the quantitieŝ̂ q1
n1•••qm

nm&& are called the cumulant
of the variablesq. The notation chosen should not be tak
to mean that the cumulants are functions of the particu
product of powers of theq. It rather indicates the moment o
highest order which occurs in their expression in terms
moments. The cumulants can be evaluated in terms of
ments by inserting Eqs.~43! and~47! into Eq. ~46!, expand-
ing the logarithm in a power series and equating like pow
in z. This gives the following expressions for the first fe
cumulants:

^^qi&&[Mi5^qi&,

^^qiqj&&[Mi j5^qiqj&2^qi&^qj&,

^^qiqjqk&&[Mi jk5^qiqjqk&2^qiqj&^qk&2^qi&^qjqk&

2^qiqk&^qj&12^qi&^qj&^qk&, ~48!

which are valid for any number of equali , j ,k. An explicit
general formula for converting moments into cumulants c
be found in Ref.@4#.

Although both representations are formally equivale
the cumulant expansion~47! presents the more natura
choice for our purpose. The advantage of this representa
is that just the first two cumulants, namely, the means^qi&
and covarianceŝqi ,qj& mainly contribute to Eq.~47! for t
going to zero; while higher-order cumulants contain inform
tion of decreasing significance, unlike higher-order m
ments. This becomes more evident if one considers fo
moment a one-dimensional stochastic process with a c
stant diffusion coefficient. In this case, Eq.~45! gives

^xi&5xn
i 1t@ i ~ i21!xn

i22D1 ixn
i21Gn#1O~t2!, ~49!

from which follows that we cannot set all moments high
than a certain order to zero, since^x2i&>^xi&2 and thus, all
moments contain information about lower moments. For
mulants, however, we have

^^x&&5M1~xn ,t!5xn1O~t!,

^^x2&&5M2~xn ,t!5tD1O~t2!,

^^x3&&5M3~xn ,t!5t3D2Gn91O~t4!,

^^xk&&5Mk~xn ,t!5O~tk! ~k.3!. ~50!

This means that in constructing the short time propaga
P(k) in terms of the cumulant generating function we c
consistently set in Eq.~47! ^^xk11&&50, i.e.,
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P~k!~xn11 ,tuxn!5~2p!21E
2`

`

dzexpF2ıxn11z

1(
r51

k
ır

r !
Mr~xn ,t!zr G , k.1. ~51!

The cumulants involved in Eq.~51! are to be evaluated to
ordertk, e.g., in terms of Eq.~45!. Although another much
more accurate power series expansion for moments ca
used for the present purpose@26,31#, we will not do so here
to keep the presentation simple. Recall also that the con
tional first-order propagator is obtained by retaining inP(2)
terms of ordert.

The generalization of Eq.~51! to multidimensional sys-
tems is straightforward

P~k!~q
n11,tuqn!5~2p!2mE dz expF2ıziqi

n11

1ıM i~q
n,t!zi2

1

2
Mi j ~q

n,t!zizj

2
ı

6
Mi jr ~q

n,t!zizjzr2••• G , k.1.

~52!

If one neglects, in the above equation, cumulants of hig
order than 2, one immediately obtains

P~g!~q
n11,tuqn!5$~2p!mdet@Mi j ~q

n,t!#%21/2

3exp$2 1
2M

i j ~qn,t!

3@qi
n112Mi~q

n,t!#@ # j%. ~53!

The above short time propagator is generally valid to or
t2 with Mi andMi j given by

Mi~q
n,t!5Fqi1tGi1

t2

2 SGj] jGi1
1

2
Dkj]k j

2 Gi D G
qn

1O~t3!,

Mi j ~q
n,t!5FtDi j1

t2

2 SDik]kGj1Djk]kGi1Gk]kDi j

1
1

2
Drk] rk

2 Di j D G
qn

1O~t3!. ~54!

But what is especially pleasing is that for multidimension
systems the cumulant expansion may converge even b
than in one dimension, in the sense that the leading term
Mi jk may be of ordert

5 rather thant3 as in Eq.~50!. In this
case, the short time propagatorP(k) remains Gaussian fo
k<4, and can be evaluated in terms of Eq.~53! if one in-
cludes inMi andMi j terms up to ordert4. Two physically
meaningful systems of such a kind will be considered S
IV.

If this is not the case, non-Gaussian corrections are to
taken into account in Eq.~52! to obtainP(k.2) . Of course,
these more accurate propagators are more difficult to ev
be

n-

r

r

l
ter
of

c.

e

u-

ate than, say, Eq.~53!, but it should not be so dramatic i
practical applications. The integral in Eq.~52! could be
evaluated approximately having regard to the smallness
non-Gaussian corrections2(ı/6)Mi jr zizjzr2•••. One notes,
however, that an approximate evaluation of such a k
spoils the normalization

E dqn11P~k!~q
n11,tuqn!51, ~55!

which is automatically preserved in Eq.~52!. From this point
of view, numerical evaluation of the integral in Eq.~52!
seems preferable. It can easily be accomplished if one ta
advantage of fast Fourier transforms@32#. The favorable
scaling of the fast Fourier transforms, which is almost line
with the total number of grid points, allows one to evalua
P(k) to any desired order int with a mild increase of com-
putational efforts.

Before closing this section a few remarks are in ord
First we note that Eqs.~53! and ~54! exactly coincide with
our previous result, given by Eqs.~32! and ~33!, for
D(q)5B(q)BT(q). This is not surprising if one notices tha
cumulants of higher order than 1 of the systematic variab
q do not contain the deterministic solution, being thus e
actly the same as cumulants of the stochastic portion
q(t) in the corresponding Langevin description. Next w
would like to emphasize the exceptional ease with which t
general result, Eqs.~53! and~54!, has been obtained. It is in
drastic contrast to the power series expansion formal
whose utility seems rather doubtful for general stocha
processes@21#. Noteworthy also is the structure of Eq.~53!.
The exponent of this short time propagator is a rational fu
tion of t, being thus different from a polynomial represent
tion inherent to the power series expansion formalism@see
Eq. ~18!#. Finally, we note that the method outlined abo
can be modified to cover truly nonlinear Fokker-Plan
equations whose coefficients exhibit a functional depende
on the distribution functionP(q,t) @31#. These equations
arise very naturally in many branches of physics and che
istry such as plasma physics, nonlinear optics, and theor
nucleation, but their solution, either analytical or numeric
presents a sufficiently difficult and often impossible task.

IV. APPLICATIONS

The aim of this section is twofold. First, we would like t
illustrate the power of the various approximations discus
above for the short time propagator in path integral calcu
tions. To this end, a model system is chosen which is sim
enough to enable comparison with exact results obtained
other means. Yet another goal is to show the utility of t
cumulant expansion formalism in treating processes with
gular diffusion matrices. For this purpose, the idea int
duced here is directly applied to two of the most extensiv
studied models, namely, the so-called Kramers and colo
noise models. The corresponding short time propagators
determined explicitly to ordert4. Our selection is not ex-
haustive with respect to methodology, but the essentials
the present technique are thought to be well illustrated
these cases. It may also be noted that the models we
going to discuss are commonly used in studies of superio



tic
-

te

c
na
di

th

c

-
e

an

in

g
be
ns
e

n

b

e

re

e
ra

t-

for
e,
ed
nd,

er
ines,

55 2503HIGH-ACCURACY DISCRETE PATH INTEGRAL . . .
conductors, Josephson tunneling junctions, nonlinear op
nucleation and escape rate theories@5,33#. The essential fea
tures of many of these processes mimic the dynamics
potential barrier crossing, a problem which was first trea
in a landmark paper by Kramers@2#.

A. Path integral calculations

We first illustrate the use of the propagator, present te
nique by calculating the propagator of a one-dimensio
stochastic process. A benchmark model repeatedly stu
by many authors, within this context, is

ẋ5x2x31ADF~ t !, ~56!

where the noiseF(t) is the same as in Eq.~19!. The dynam-
ics is that of an overdamped Brownian particle moving in
symmetric bistable potentialU(x)5x4/42x2/2 with minima
at x6561. The process is governed by the Fokker-Plan
equation

] tP~x,tux0!5F]x~x32x!1
D

2
]xx
2 GP~x,tux0!, ~57!

for which numerically exact results~i.e., can be made arbi
trarily accurate! are easily obtained by a finite-differenc
method described earlier@7#. As Eq. ~56! is nonlinear inx,
the process is not Gaussian and, therefore, infinitely m
terms are generally to be included in Eq.~51! to accurately
evaluate the propagator for arbitrarily larget.

Figure 1 shows the accuracy achieved when employ
P(k)(x,tux0) as a single time step propagatorcompared to
the exact solution for different values oft and for k51,2,
and 3. The calculation is performed forx05x2 and
D50.1. The algorithm we used in evaluatin
P(k.2)(x,tux0) to carry out the fast Fourier transform can
found in Ref.@32#. As expected, the various approximatio
are not very different from the exact solution when the tim
incrementt is small enough. With increasingt, however, the
accuracy of the standard first-order propagatorP(1) deterio-
rates very rapidly, and it becomes inadequate fort.0.1. The
second-order propagatorP(2) , though more accurate tha
P(1) , also fails to produce correct results fort.0.2. The
reason is that its range of validity is generally restricted
the inequalityM25Dt@11t(123x0

2)#>0. The same fortu-
nately is not true for higher-order propagators. A consid
able reduction of the error over a broad range oft is seen to
be already achieved with just the first non-Gaussian cor
tion taken into account@seeP(3)(x,tux0)#.

Next, we apply the various approximations discuss
above for the short time propagator to the path integ
evaluation of the same conditional probabilityP(x,tux2).
The calculation is again performed forD50.1. The integrals
in Eq. ~5! are evaluated iteratively using the primitive rec
angular rule

Pi~ t1t!5Pi j ~t!Pj~ t !h; Pi~ t !5P~xi ,t !;

Pi j ~t!5P~k!~xi ,tuxj !, ~58!

where a uniformly spacedx lattice of J points is introduced
reading
s,

of
d

h-
l
ed

e

k

y

g

y

r-

c-

d
l

xi5x11~ i21!h, i51, . . . ,J, h5~xJ2x1!/~J21!.

A grid of 64 points in the interval@21.6,1.6# was found to
be sufficient for the quadrature. One might expect that
fixed t andN this discretization procedure would produc
with increasingk, much more accurate results than obtain
with the conventional first-order propagator. We have fou
however, that the use of the matrixPi j defined by Eq.~58!,

FIG. 1. Probability distributionP(x,tux0) for the model~57! for
D50.1 andx0521. Circles, exact results; dashed lines, first-ord
propagator; dot-dashed lines, second-order propagator; solid l
third-order propagator.~a! t50.2, ~b! t50.3, and~c! t50.4.
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regardless of the numberk, leads to a trivial long-time limit
solution,P(x,t→`ux0)50, instead of the exact one

P0~x!5H E
2`

`

dx exp@22U~x!/D#J 21

exp@22U~x!/D#.

~59!

This is because the matrixPi j does not preserve the norm o
the distribution function

(
i51

J

Pi~ t !h51 ~60!

or, equivalently, satisfy the condition

(
i51

J

Pi j ~t!h51 ; j ,t. ~61!

We have found that a dramatic reduction of the discretiza
error is achieved by a simple procedure of renormalizing
transition matrix elements so that the norm is conserv
Specifically, we enforce Eq.~61! by the following modifica-
tion of Pi j :

P̃i j5H (
k51

J

Pk jhJ 21

Pi j . ~62!

The relative efficacy of differentP(k) is demonstrated by
calculating the second cumulantM2(x2 ,t) and the matrix
elementP(x2 ,tux1). The former characterizes the width o
the probability distribution. While the latter is closely relate
to the first nonzero eigenvalue of the Fokker-Planck ope
tor, l1, whose inverse is the largest relaxation time in
double well. ForD50.1 the numerically exact result i
l150.002 776 140 8. Figure 2 shows the relative error

«5~approximate2exact!/exact, ~63!

in the path integral evaluation ofM2(x2 ,t) and
P(x2 ,tux1) made by usingP(k) with k51, 2, and 3 as a
function of t. The calculation is performed with fixe
t50.1. As evidenced by Fig. 2, the error, being usua
maximal att5t, reaches zero forl1t;2.5 and then slowly
increases witht going to infinity until a stationary value is
achieved. It is also seen that the error made by the stan
first-order propagatorP(1) is large compared to that of th
cumulant expansion. Although no non-Gaussian correc
appears inP(2) in the present treatment, the effect of reta
ing terms of ordert2 is the reduction of the error roughly b
a factor of 4. The non-Gaussian third-order propagato
seen to further reduce the error again by a factor of 4. T
treatment is fairly straightforward and can be carried out s
tematically until a given level of accuracy is reached. Ne
we present in Fig. 3 results obtained withP(3) for different
values oft. A comparison of Figs. 2 and 3 shows that t
errors made by usingP(2) andP(1) with t50.1 are almost
the same as those ofP(3) obtained witht50.2 and 0.3, re-
spectively. This means that results to a given level of ac
racy are obtained with a smaller value ofN. Finally, we
illustrate the efficacy of the present technique in giving p
cise long-time limit results. The exact stationary solutio
n
e
d.

-

rd

n
-

is
e
-
,

-

-
,

Eq. ~59!, is shown in Fig. 4 and compared with that obtain
by usingP(1) andP(3) with t50.2, and 0.4 forl1t510. It is
seen that an adequate description is achieved even th
t50.4. This is in drastic contrast to the finite-differen
schemes currently used to solve Fokker-Planck equations
merically. These schemes do not provide automatically
positivity of the solution, thus restricting the size of the tim
incrementt and requiring very fine time slicing. With in
creasingt they very rapidly become unstable and may f
grossly.

Before closing we note that the accuracy of an iterat
path integral method is typically determined by the accura
of the space and time discretizations. The standard wa
control it is thus by increasing the number of grid pointsJ
and time slicesN. In practice, however, one would like thes
numbers to be as small as possible, in order to achieve c
putational economy. The accuracy of the space discretiza
can be substantially improved if one uses, instead of
primitive histogram representation of the probability dist
bution, a more accurate quadrature scheme. While taking
vantage of the present technique allows one to achiev

FIG. 2. Logarithm of the relative error lnu«u @Eq. ~63!# in the
path integral evaluation, witht50.1, of ~a! the second cumulan
M2(x2 ,t), and ~b! the matrix elementP(x1 ,tux2) for the model
~57! for D50.1 andx6561. The dashed, dot-dashed, and so
lines are, respectively, for the results obtained usingP(k) with k51,
2, and 3. In the abscissa,l1 is the first nonzero eigenvalue of th
Fokker-Planck operator.
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given level of accuracy with a slow~or even without!
increase of the number of time steps solely due to increa
k.

B. Kramers model

The Kramers model is described by two coupled Lan
vin equations which read in dimensionless variables

ẋ5v, v̇1gv2G~x!5A2g«F~ t !, ~64!

with F(t) being Gaussian white noise defined by Eq.~20!. In
the aboveg is the friction coefficient, and« is a measure of
the noise intensity. The dynamics described by the mode
that of a Brownian particle moving in a potential

U~x!52Ex

dyG~y!. ~65!

This process is governed by the following Fokker-Plan
equation~also called the Klein-Kramers equation! for the
probability density of finding the particle at timet at position
x with velocity v

FIG. 3. Same as in Fig. 2, but for the third-order propaga
The solid, dot-dashed, and dotted lines are fort50.1, 0.2, and 0.3,
respectively.
g

-

is

k

] tP~x,v,t !5@2v]x2G~x!]v1g]v~v1«]v!#P~x,v,t !.
~66!

It is not hard to see that the diffusion matrix of Eq.~66! does
not possess an inverse.

The continuous time path integral solution for the abo
process is easily obtained by using Eq.~64! to transform the
probability density functional for the noise, which is give
by

P@F~ t !#5C expF2
1

4g«E0
t

dsF2~s!G , ~67!

with C being a normalization constant, to the probabil
density functional for the coordinatex

P@x~ t !#5CJ@x~ t !#expH 2
1

4g«E0
t

ds@ ẍ1g ẋ2G~x!#2J ,
~68!

where J@x(t)# denotes the Jacobian of the transformati
from theF(t) realizations to thex(t) realizations. One sees
however, that this solution is purely formal and, therefore,

.
FIG. 4. Stationary distribution for the model~57! for D50.1.

The solid line is the exact result, Eq.~59!. The dot-dashed and
dashed lines show, respectively, the path integral evaluation
t50.2 and 0.4.~a! First-order propagator, and~b! third-order
propagator.
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2506 55ALEXANDER N. DROZDOV
simpler to implement numerically than the original Fokke
Planck or Langevin equations.

By contrast, the formalism developed here offers a c
venient tool for the systematic treatment of the Kram
problem both analytically and numerically. Keeping term
up toO(t4) in Eq. ~45!, one obtains that the first cumulan
of the variables (x,v) are given by the expressions

Mx5xn1tvn1
t2

2
~Gn2gvn!1

t3

6
@g2vn2gGn1vnGn8#

1
t4

24
@g2Gn2g3vn1Gn8~Gn22gvn!1vn

2Gn9#,

M v5vn1t~Gn2gvn!1
t2

2
@g2vn2gGn1vnGn8#

1
t3

6
@g2Gn2g3vn1Gn8~Gn22gvn!1vn

2Gn9#

1
t4

24
@g4vn2g3Gn1Gn8~3g2vn22gGn1vnGn8!

1Gn9~2g«13vnGn24gvn
2!1vn

3Gn-#,

Mxx5
2
3g«t3~12 3

4gt!,

Mxv5g«t2@12gt1 1
12t2~7g214Gn8!#,

M vv52g«t@12gt1 1
3 t2~2g21Gn8!

2 1
12t3~4g315gGn823vnGn9!#, ~69!

while all cumulants of higher order than 2 vanish. The lat
property implies that the Gaussian approximation for
short time propagator, Eq.~53!, remains correct up to an
including terms of ordert4. This immediately yields

P~4!~xn11 ,vn11 ,tuxn ,vn!

5~4p2M !21/2expF2
M vv

2M
~xn112Mx!

2

1
Mxv

M
~xn112Mx!~vn112M v!

2
Mxx

2M
~vn112M v!

2G , ~70!

whereM5MxxM vv2Mxv
2 . Recall that the cumulantsMx ,

M v , Mxx, Mxv , M vv involved in Eq.~70! are functions of
t and of the prepoint (xn ,vn) @see Eq.~69!#, but to keep the
notation simple we do not indicate this explicitly.

As evidenced by Eq.~69!, the range of validity of the
above single step propagator is rather sensitive to the fric
coefficient. The time incrementt should always be taken
small enough in the high friction limitg→` so that to keep
the integration measure positive, and may be taken la
enough otherwise. We also emphasize that its utility is
stricted to 3<k<4. For lower k the matrix elementMxx
becomes equal to zero and the singularity problem is me
-
s

r
e

n

e
-

in

this case. While fork>5, higher-order cumulants of the var
ables (x,v) are no longer equal to zero and non-Gauss
corrections are needed. Substitution of Eq.~70! into Eq. ~5!
yields the discrete path integral representation of the Kra
ers problem we are looking for. This representation is
powerful in formal manipulations as the continuous time
tegral solution, Eq.~68!, and still permits one to devise ver
efficient algorithms for numerical simulations which cann
be developed in terms of partial@Eq. ~66!# or stochastic@Eq.
~64!# differential equations.

C. Colored-noise problem

Another example is a process subjected to external n
with a finite correlation time, so-called colored noise. It
governed by a one-dimensional non-Markovian Lange
equation of the form

ẋ5G~x!1v~ t !, ~71!

where the fluctuating forcev(t) is assumed to be a nonwhit
Gaussian process with statistical properties

^v~ t !&50, ^v~ t !v~s!&5«s~ t2s!. ~72!

An important situation repeatedly studied by many author
the case ofv(t) being an Ornstein-Uhlenbeck process, i.e

v̇5g@2v1A2«F~ t !#, ~73!

with g21 being the correlation time of the noise. The whi
noise termF(t) and the quantity« appearing in the above
equations are exactly the same as in Eq.~64!. SinceF(t) is
Gaussian and has a zero mean, the noisev(t) is also Gauss-
ian with the correlation function

^v~ t !v~s!&5«g exp~2gut2su!. ~74!

When g goes to infinity~short correlation times!, one can
completely neglect the termv̇ in Eq. ~73!, thus reducing the
problem to that already studied in the previous sections.
finite g ’s the Fokker-Planck equation describing the pair s
chastic process„x(t),v(t)… reads

] tP~x,v,t !5$2]x@G~x!1v#1g]v~v1«g]v!%P~x,v,t !.
~75!

As is the case with Eq.~66!, the diffusion matrix of the
above equation is singular. Moreover, the Fokker-Planck
namics for the pair„x(t),v(t)… does not obey detailed ba
ance.

Following the line outlined in the preceding section, it
not hard to show that the short time propagator valid to or
t4 for the above process has the same form as in Eq.~70!,
but cumulants are now given by

Mx5xn1t~Gn1vn!1
t2

2
@~Gn1vn!Gn82gvn#

1
t3

6
@vn~g22gGn8!1~Gn1vn!Gn8

21~Gn1vn!
2Gn9#

1
t4

24
@~Gn1vn!~Gn8

323gvnGn9!2gvn~Gn8
21g2
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2gGn8!12«g2Gn914~Gn1vn!
2Gn8Gn9

1~Gn1vn!
3Gn

-#,

M v5vn~12gt1 1
2g2t22 1

6g3t31 1
24g4t4!,

Mxx5
2
3«g2t3@11 3

4 t~Gn82g!#,

M vv52«g2t~12gt1 2
3g2t22 1

3g3t3!,

Mxv5«g2t2F11
t

3
~Gn823g!1

t2

12
~7g224gGn81Gn8

2

13GnGn913vnGn9!G . ~76!

It may be noted here that the remarks made below Eq.~70!
are all valid in this case as well. Finally, we would like
emphasize that aside from the two aforementioned mo
that are currently investigated by the present author, this
malism can also be applied to many other fields involv
Fokker-Planck and Langevin equations.

V. CONCLUSIONS

In this work, the cumulant expansion formalism is pr
sented which permits one to generate a high-accuracy
crete path integral representation of stochastic dynamics.
method is rather simple to implement, but also general
rigorous and allows for thesystematicderivation of the short
time propagator valid to any desired precision in time inc
ment t. Another attractive feature of the present techniq
when compared to the others known in the literature, is t
it is applicable, whether the diffusion matrix is invertible
singular. Numerical applications to the conditional probab
ity in a double well shows this approach to be a drama
improvement over the standard first-order propagator. Its
in a path integral means a significant reduction of the num
of time steps that are required to achieve a given leve
on

sic
t.
.
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accuracy and, therefore, significantly increasing the feas
ity of path integral calculations. In view of this it is difficul
to overstate the usefulness of the path integral formulatio
treating numerically multidimensional systems. This will b
the subject of our future publications, but let us briefly me
tion here the methods available.

Two general approaches are possible: one can integ
Eq. ~5! iteratively or use global integration~Monte Carlo!
techniques. Each approach has its own advantages and d
backs. In studying one-, two-, or three-dimensional syste
when storage requirements are not so dramatic yet, the it
tive evaluation of themN integral in Eq.~5! is preferable.
Efforts along this line has been quite successful, and a n
ber of iterative schemes have been developed that are c
putationally efficient in terms of speed@20#. High proficiency
is achieved by using fast Fourier transforms@34#. The latter
becomes particularly important ifmN is large, as is the cas
when a few coupled degrees of freedom are involved an
simulations over very long times are required. If the numb
of coupled degrees of freedom is too large, themN integral
in Eq. ~16! must be evaluated by Monte Carlo techniqu
@35#. The most appealing feature of this approach is tha
avoids storing large dimensional matrices. Instead, themN
integral in Eq.~5! is evaluated by moving repeatedly from
point to point on the space-time lattice, at each point prop
ing a change in the coordinates, and accepting the chang
the Metropolis algorithm@35#. The use of this procedure a
lows for the efficient treatment of truly multidimension
systems without introducing uncontrolled approximation
Moreover, it is often the case that computational effort n
essary for obtaining the numerically exact solution gro
slowly with substantial dimensionality increases due to i
portance Monte Carlo sampling techniques@35#.
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